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Lecture 5 - BLOB analysis and feature
based classification
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What can you do after today?

Calculate the connected components of a binary image. Both
using 4-connected and 8-connected neighbours

Compute BLOB features including area, bounding box ratio,
perimeter, center of mass, circularity, and compactness

Describe a feature space

Compute blob feature distances in feature space

Classify binary objects based on their blob features
Estimate feature value ranges using annotated training data
Compute a confusion matrix

Compute rates from a confusion matrix including sensitivity,
specificity and accuracy

Determine and discuss what is the importance of sensitivity and
specificity given an image analysis problem

DTU Compute, Technical University of Denmark Image Analysis 2025
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Object recognition

B Recognise objects in images
B Put them into different classes
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BLOB - what is it?

m BLOB = Binary Large Object
— Group of connected pixels
m BLOB Analysis
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Isolating a BLOB

B What we want:

— For each object in the image, a
. list with its pixels

B How do we get that?

— Connected component analysis
B Connectivity

- Who are my neighbors?

- 4-connected

- 8-connected

4-connected

8-connected Image
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Connected component analysis

B Binary image
- . X B Seed point: where do we
) start?
O concept
— Delete (burn) the pixels we
visit
— Visit all connected (4 or 8)
neighbors

4-connected

4

< <

2
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BLOBs with 4- and 8- connectivity

3and7

9and5

8and6

7and5

4and5

.. Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
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The result of connected component analysis

. B An image where each BLOB
. .. (component) is labelled

. B Each blob now has a unique ID
number

| . . . B What do we do with these blobs?
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Features

B Feature

— A prominent or distinctive
aspect, quality, or
characteristic

— This radio has many good
features

m Car (Ford-T) features
- 4 wheels
— 2 doors
- 540 kg
- 20 hp

13 DTU Compute, Technical University of Denmark Image Analysis 2025
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Feature vector

B Feature vector

— Vector with all the features for one object
B Ford-T features

- 4 wheels

— 2 doors

- 540 kg

- 20 hp

B Ford Fiesta features

i R VIEES

- 3 doors

- 1100 kg

- 90 hp

f=[4, 3, 1100, 90]
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Visual features to determine car type
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Feature extractions

: B Compute features for each BLOB that can be used to

. . identify it

. - Size
r . pu . - Shape

— Position
E——— B From image operations to mathematical operations
® o ' — Input: a list of pixel positions
y ® - Feature vector

B First step: remove invalid BLOBS

— too small or big- using morphological
operations for example

— border BLOBs

Feature vector =[2,1,...,3]

Feature vector = [4,7,...,0]

16 DTU Compute, Technical University of Denmark Image Analysis 2025
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BLOB Features

B Area
— number of pixels in the BLOB

— Can be used to remove noise (small
BLOBS)

One BLOB
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BLOB Features

(xmin» ymin)

(xmaxr ymax]

One BLOB

18 DTU Compute, Technical University of Denmark

Bounding box

- Minimum rectangle that contains the
BLOB

- Height: ¥Ymax — Ymin

— Bounding box ratio:

Ymax — Ymin

Xmax — Xmin

- tells if the BLOB is elongated

Image Analysis 2025
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BLOB Features

B Bounding box
- Bounding box area:

(xmin' ymin) (ymax - ymin) ) (xmax - xmin)

— Compactness of BLOB

BLOB Area

(Ymax—Ymin)' (*max—Xmin)

Not compact Compact

Compactness =

(xmaxr ymax]

One BLOB
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BLOB Features

B Bounding box ratio
- Bounding box height divided by the width

(xmin» ymin)

(xmaxr ymax]

One BLOB
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BLOB Features

B Center of mass (x.,y,)

N
1
X, =— ) Xx;
B (xC’yC) =1
N
1
\ Ve = NZ Vi
(xi, i) i=1
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BLOB Center of Mass

The smallest BLOB is found using 4-

connectivity. What is the center of mass of

this BLOB. The image has origin (0,0) and 1>
uses a (x,y) coordinate system.

(5,8.5)

(6.5,3.5)

(4.5,0.5)

(7,4.5)

.. Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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BLOB Features

B Perimeter
- Length of perimeter
- How can we compute that?

B In practice, it is computed differently
and more accurately

Y (Fx ) @ SE) = £, )

One BLOB

25 DTU Compute, Technical University of Denmark Image Analysis 2025
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BLOB Features - circularity

B How much does it look like a circle?

m Circle

— Area A = nr?
— Perimeter P = 2nr

Circle like

B New object assumed to be a circle
- Measured perimeter B,
- Measured area 4,,

B Estimate perimeter from (measured) area
- Estimated perimeter P, = 2,/74,,

Not circle like

26 DTU Compute, Technical University of Denmark Image Analysis 2025
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BLOB Features - circularity

B Compare the perimeters
- Measured perimeter B,

- Estimated perimeter P, = 2,/74,,

Circle like m Circularity 1:

Circularity = — =

Not circle like

27 DTU Compute, Technical University of Denmark Image Analysis 2025
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Circularity math

Circularity = = =



*

Circularity math

26%

P P P> 0 -

Circularity = — =

Pe zx/ﬂh

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
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Circularity math

P, <P, S
m = P,

> Fe om—

.. Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
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BLOB Features - circularity

B Compare the perimeters
- Measured perimeter B,

- Estimated perimeter P, = 2,/74,,

Circle like m Circularity:

P P
Circularity = — = =

Fe 2mA,,

B This measure will normally be =21

Not circle like

31 DTU Compute, Technical University of Denmark Image Analysis
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BLOB Features - circularity inverse

B Compare the perimeters
- Measured perimeter B,

- Estimated perimeter P, = 2,/74,,

Circle like ® Circularity (inverse):

. . . e
Circularity inverse = > =

B This measure will normally be <1

Not circle like

32 DTU Compute, Technical University of Denmark Image Analysis
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After feature extraction

Area, compactness, circularity etc calculated for all BLOB

Feature vector = [2,1,...,3]

Feature vector = [4,7,...,0]

One feature vector per blob

33 DTU Compute, Technical University of Denmark Image Analysis
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BLOB Classification

B Classification
— Put a BLOB into a cl/ass

B (/asses are normally pre-defined
- Car
- Bus
— Motorcycle
— Scooter

B Object recognition

34 DTU Compute, Technical University of Denmark
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Object recognition: Circle example

number larity (pixels)

1 0.99 | 6730
6611
2073

Which objects are circles?

35 Image Analysis 2025
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Circle classification

B Two classes:
— Circle
— Not-circle

B Lets make a model of a
circle

36 DTU Compute, Technical University of Denmark Image Analysis 2025
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Circle classification

B Proto-type circle
— Circularity : 1
— Area: 6700

37 DTU Compute, Technical University of Denmark Image Analysis 2025
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Feature Space

Proto-type circle

Objects in here are classified as circles

38 Image Analysis 2025
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Feature space

Feature 2: Area

39

B Proto-type circle
— Circularity : 1
— Area: 6700

B Some slack is added to
allow non-perfect circles
— Circularity: 1 +/- 0.15

Image Analysis 2025
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Feature space - distances

Feature 2: Area

B How do we decide if an
object is inside the
circle?

B Feature space distance

B Euclidean distance in
features space

Blob 1: circularity: 0.31, Area : 6561

D = /(031 — )2 #(6561 — 6700)?

40 Image Analysis 2025
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Ce” CIaSS|flcat|On Single Nuclei Multiple Nuclei

J -

UV Microscopy Fluorescence Microscopy (DAPI)

Images from ChemoMetec A/S
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Nuclei classification

o ., ~ <+, . EDAPI image
T e e . ® M Two classes
. . - Single nuclei
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Training and annotation

. '° o B Selection of true

8  °f . . single nuclei marked
. |

« . - MWThresholding
| * B BLOB Analysis
) o . — Circularity
| i - Area

Jo qu -
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Training data - analysis

Acceptance area

11 1.2 1.3

Circularity

Probably outliers

44 Image Analysis
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Feature ranges

Area

Circularity

1.1 1.2 1.3 1.4

Circularity
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Using the classifier

R n’u", - :.
R S
N
DAPI input image

46 DTU Compute, Technical Universi

B Threshold input image

B Morphological opening (SE 5x5)
B Morphological closing (SE 5x5)
B BLOBs found using 8-neighbours
B Border BLOBS removed

B BLOB features computed
— Area + circularity

B BLOBs with features inside the
acceptance range are single-nuclei

ty of Denmark Image Analysis 2025
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Using the classifier
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Circularity
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How well does it work?

48 DTU Compute, Technical Universi

B We say we have a

O algorithm!

B Strangely the

. doctor/biochemist do not

~. trust this statement!
- They need numbers!

B How do we report the
performance?

ty of Denmark Image Analysis 2025
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Creating ground truth — expert annotations
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Four cases

B True Positive (TP): A nuclei is classified as a nuclei

B True Negative (TN): A noise object is classified as noise object
N A noise object is classified as a nuclei

B False Negative (FN): A nuclei is classified as a noise object
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Confusion matrix

Actual noise

Actual single-nuclei
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Confusion matrix

Actual noise

Actual single-nuclei
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Confusion matrix

Actual noise

Actual single-nuclei
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Confusion matrix

Actual noise

Actual single-nuclei
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Confusion matrix

Actual noise

Actual single-nuclei

55 DTU Compute, Technical University of Denmark

Image Analysis

2025



DTU Compute

Accuracy

B Tells how often the classifier is correct

P+TN

T
AcCcuracy=

H N is the total number of annotated objects

N=TN+TP+ FP+ FN

56 DTU Compute, Technical University of Denmark Image Analysis
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Accuracy from Confusion Matrix

Predicted | Predicted

as noise |as single-

nuclei
Actual TN=19 FP=2
noise
Actual FN=5 TP=51
single-
nuclei

42% 0%

65% 0%

71% ' 4%
97% ' 4%

Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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True positive rate (sensivity)

B How often is a positive predicted when it actually is
positive

Sensivity=———

+TP All the experts true single-nuclei
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Specificity

B How often is a negative predicted when it actually is
negative

TN

Specificity=TN

+FP All the experts true noise objects
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True positive rate

1%
You have made an algorithm that can locate neon fish in an aquarium. An
expert has marked all neon fish in an image as seen in Figure 1 (left). The
result of your algorithm is seen in Figure 1 (right). What is the true positive
. ; ., ‘0 . n‘ ‘.)
rate of your algorithm’ 92%
81%
55%
Figure 1: Tmage of aquarium with neon fish. Left: Expert markings are
shown as ellipses. Right: Algorithm markings are shown as ellipses.
67%

.. Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
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Optimising the classification

B Changing the
classification limits

B The rates will be
changed:

— Accuracy

— Sensitivity

— Specificity

B Very dependent on the
task what is optimal

Circularity

68 Image Analysis 2025
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Dependencies

B Increasing true positive rate
— Increased
— Decreased

69

1.1

Circularity

1.2

1.3

Image Analysis
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Example — cell analysis

B We want

single-nuclei cells

— For further analysis

m We

H We are
nuclei

want to do an analysis of a noise object

interested in the true number of single

70 DTU Compute, Technical University of Denmark Image Analysis 2025
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What measure is the most important?

B We want only single-nuclei cells
- For further analysis High tre positves

B We do not want to do an analysis
of noise objects

C We dare nOt mtereSted in the tl‘Ue Hightruenegatives' 6%
number of single nuclei

24%

Low false negatives ' 6%

.. Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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Advanced classification

B Fitting more advanced functions to the
B Multivariate Gaussians
B Mahalanobis distances

1.1 1.2

74

samples

1.3

Circularity

Image Analysis
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Feature Engineering vs. Deep learning

75

B Until around 5-7
years ago
was the
way to go
B Now deep learning
beats everything

B However - feature
engineering is still
iImportant

Image Analysis 2025
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Feature engineering

B Given a classification problem
— Cars vs. Pedestrians

B Use background knowledge to
select relevant features
— Area
— Shape
— Appearance

Circularity —

B Use multivariate statistics to
classify

B Depending on the selected
features

76 Image Analysis 2025
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Deep learning

77 DTU Compute, Technical University of Denmark

B You start with a dummy
classifier

B Feed it with lots and lots
of data with given labels

B The network learns the
optimal features

B Layer/network engineering

Image Analysis 2025
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Feature Engineering vs. Deep learning

Deep Learning
B When you have lot B When you have

of annotated data limited data
B Where it is not clear ® When it is rather
what features work obvious what

features can
discriminate

78 DTU Compute, Technical University of Denmark Image Analysis 2025



The level of the lecture

Far too easy - my hamster could understand it ' 3%

Too easy - | need more - 14%

Too hard - slow down please 0%

Far too hard - my head is exploding . 6%

Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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The quizzes

Not enough quizzes - | want more more _ 20%

Argghh! These quizzes...| want less ' 3%

.. Start the presentation fo see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..



DTU Compute

Next week

B Pixel classification
B Advanced classification

81 DTU Compute, Technical University of Denmark
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