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Lecture 5 – BLOB analysis and feature 
based classification
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What can you do after today?

 Calculate the connected components of a binary image. Both 
using 4-connected and 8-connected neighbours

 Compute BLOB features including area, bounding box ratio, 
perimeter, center of mass, circularity, and compactness

 Describe a feature space
 Compute blob feature distances in feature space
 Classify binary objects based on their blob features
 Estimate feature value ranges using annotated training data
 Compute a confusion matrix
 Compute rates from a confusion matrix including sensitivity, 

specificity and accuracy
 Determine and discuss what is the importance of sensitivity and 

specificity given an image analysis problem
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Object recognition
 Recognise objects in images 
 Put them into different classes
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BLOB – what is it?
 BLOB = Binary Large Object

– Group of connected pixels
 BLOB Analysis

– Connected component analysis
– Object labelling

.

.

.
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Isolating a BLOB
 What we want:

– For each object in the image, a 
list with its pixels

 How do we get that?
– Connected component analysis

 Connectivity
– Who are my neighbors?
– 4-connected
– 8-connected

4-connected

8-connected Image
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Connected component analysis
 Binary image 
 Seed point: where do we 

start?
 Grassfire concept

– Delete (burn) the pixels we 
visit

– Visit all connected (4 or 8) 
neighbors

3
4

1
2

4-connected

(1,1) x

Y
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The result of connected component analysis
 An image where each BLOB 

(component) is labelled
 Each blob now has a unique ID 

number
 What do we do with these blobs?

1

2

3

…
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Features
 Feature

– A prominent or distinctive 
aspect, quality, or 
characteristic

– This radio has many good 
features

 Car (Ford-T) features
– 4 wheels
– 2 doors
– 540 kg
– 20 hp

http://upload.wikimedia.org/wikipedia/commons/1/15/Late_model_Ford_Model_T.jpg
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Feature vector
 Feature vector

– Vector with all the features for one object
 Ford-T features

– 4 wheels
– 2 doors
– 540 kg
– 20 hp

 Ford Fiesta features
– 4 wheels
– 3 doors
– 1100 kg
– 90 hp

f=[4, 2, 540, 20]

f=[4, 3, 1100, 90]

http://upload.wikimedia.org/wikipedia/commons/1/15/Late_model_Ford_Model_T.jpg
http://en.wikipedia.org/wiki/File:Ford_Fiesta_2003_RF_14dec2006.jpg
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Feature extractions
 Compute features for each BLOB that can be used to 

identify it
– Size
– Shape
– Position

 From image operations to mathematical operations 
– Input: a list of pixel positions
– Output: Feature vector 

 First step: remove invalid BLOBS 
– too small or big- using morphological 

operations for example
– border BLOBs

Feature vector = [2,1,…,3]

Feature vector = [4,7,…,0]



DTU Compute

2025Image Analysis17 DTU Compute, Technical University of Denmark

BLOB Features
 Area  

– number of pixels in the BLOB
– Can be used to remove noise (small 

BLOBS)

One BLOB
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BLOB Features
 Bounding box

– Minimum rectangle that contains the 
BLOB

– Height: 𝑦𝑦max − 𝑦𝑦min
– Width: 𝑥𝑥max − 𝑥𝑥min

– Bounding box ratio:

– tells if the BLOB is elongated
One BLOB

𝑦𝑦max − 𝑦𝑦min
𝑥𝑥max − 𝑥𝑥min(𝑥𝑥max,𝑦𝑦max)

(𝑥𝑥min,𝑦𝑦min)



DTU Compute

2025Image Analysis19 DTU Compute, Technical University of Denmark

BLOB Features
 Bounding box

– Bounding box area:

– Compactness of BLOB

One BLOB

(𝑥𝑥max,𝑦𝑦max)

(𝑥𝑥min,𝑦𝑦min) (𝑦𝑦max − 𝑦𝑦min) ⋅ (𝑥𝑥max − 𝑥𝑥min)

Compactness = BLOB Area
(𝑦𝑦max−𝑦𝑦min)⋅(𝑥𝑥max−𝑥𝑥min)

Not compact Compact
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BLOB Features
 Bounding box ratio

– Bounding box height divided by the width

One BLOB

(𝑥𝑥max,𝑦𝑦max)

(𝑥𝑥min,𝑦𝑦min)
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BLOB Features
 Center of mass 

(𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐)

(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

(𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐)

𝑥𝑥𝑐𝑐 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑥𝑥𝑖𝑖

𝑦𝑦𝑐𝑐 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑦𝑦𝑖𝑖
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BLOB Features
 Perimeter

– Length of perimeter
– How can we compute that?

 In practice, it is computed differently 
and more accurately

One BLOB

�( 𝑓𝑓 𝑥𝑥,𝑦𝑦 ⊕ SE − 𝑓𝑓 𝑥𝑥,𝑦𝑦 )
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BLOB Features - circularity

 How much does it look like a circle?

 Circle
– Area 𝐴𝐴 = 𝜋𝜋𝑟𝑟2
– Perimeter 𝑃𝑃 = 2𝜋𝜋𝜋𝜋

 New object assumed to be a circle
– Measured perimeter 𝑃𝑃𝑚𝑚
– Measured area 𝐴𝐴𝑚𝑚

 Estimate perimeter from (measured) area
– Estimated perimeter 𝑃𝑃𝑒𝑒 = 2 𝜋𝜋𝐴𝐴𝑚𝑚

Circle like

Not circle like
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BLOB Features - circularity

 Compare the perimeters
– Measured perimeter 𝑃𝑃𝑚𝑚
– Estimated perimeter 𝑃𝑃𝑒𝑒 = 2 𝜋𝜋𝐴𝐴𝑚𝑚

 Circularity 1:

Circularity =
𝑃𝑃𝑚𝑚
𝑃𝑃𝑒𝑒

=
𝑃𝑃𝑚𝑚

2 𝜋𝜋𝐴𝐴𝑚𝑚

Circle like

Not circle like
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BLOB Features - circularity

 Compare the perimeters
– Measured perimeter 𝑃𝑃𝑚𝑚
– Estimated perimeter 𝑃𝑃𝑒𝑒 = 2 𝜋𝜋𝐴𝐴𝑚𝑚

 Circularity:

Circularity =
𝑃𝑃𝑚𝑚
𝑃𝑃𝑒𝑒

=
𝑃𝑃𝑚𝑚

2 𝜋𝜋𝐴𝐴𝑚𝑚

 This measure will normally be ≥1

Circle like

Not circle like
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BLOB Features – circularity inverse

 Compare the perimeters
– Measured perimeter 𝑃𝑃𝑚𝑚
– Estimated perimeter 𝑃𝑃𝑒𝑒 = 2 𝜋𝜋𝐴𝐴𝑚𝑚

 Circularity (inverse):

Circularity inverse =
𝑃𝑃𝑒𝑒
𝑃𝑃𝑚𝑚

=
2 𝜋𝜋A𝑚𝑚

𝑃𝑃𝑚𝑚

 This measure will normally be ≤1 

Circle like

Not circle like
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After feature extraction

Feature vector = [2,1,…,3]

Feature vector = [4,7,…,0]

Area, compactness, circularity etc calculated for all BLOB

One feature vector per blob
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BLOB Classification
 Classification

– Put a BLOB into a class

 Classes are normally pre-defined
– Car
– Bus
– Motorcycle
– Scooter

 Object recognition
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Object recognition: Circle example

Which objects are circles?
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Circle classification

 Two classes:
– Circle
– Not-circle

 Lets make a model of a 
proto-type circle
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Circle classification

 Proto-type circle
– Circularity : 1
– Area: 6700
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Feature Space
Proto-type circle

Objects in here are classified as circles
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Feature space

 Proto-type circle
– Circularity : 1
– Area: 6700

 Some slack is added to 
allow non-perfect circles
– Circularity: 1 +/- 0.15
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Feature space - distances

 How do we decide if an 
object is inside the 
circle?

 Feature space distance
 Euclidean distance in 

features space

D = (0.31 − 1)2+(6561 − 6700)2

Blob 1: circularity: 0.31, Area : 6561

Dominates all! – normalisation needed
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Cell classification

UV Microscopy Fluorescence Microscopy (DAPI)

Single Nuclei Multiple Nuclei

Images from ChemoMetec A/S
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Nuclei classification
DAPI image
 Two classes

– Single nuclei
– Noise

 Multiple nuclei together
 Debris
 Other noise
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Training and annotation
 Selection of true 

single nuclei marked

 Thresholding
 BLOB Analysis

– Circularity
– Area
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Training data - analysis

Probably outliers 

Acceptance area
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Feature ranges

Feature Min Max
Area 50 110
Circularity 0.87 1.05
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Using the classifier

DAPI input image

 Threshold input image
 Morphological opening (SE 5x5)
 Morphological closing (SE 5x5)
 BLOBs found using 8-neighbours
 Border BLOBS removed
 BLOB features computed

– Area + circularity
 BLOBs with features inside the 

acceptance range are single-nuclei
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Using the classifier

DAPI input image Found single nuclei

Feature Min Max

Area 50 110

Circularity 0.87 1.05
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How well does it work?
We say we have a great

algorithm!
 Strangely the 

doctor/biochemist do not 
trust this statement!
– They need numbers!

How do we report the 
performance?
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Creating ground truth – expert annotations

Found single nuclei Expert opinion on true single nuclei

Red markings: Single nuclei

Not marked: Noise
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Four cases
 True Positive (TP): A nuclei is classified as a nuclei
 True Negative (TN): A noise object is classified as noise object
 False Positive (FP): A noise object is classified as a nuclei
 False Negative (FN): A nuclei is classified as a noise object

Found single nuclei
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Confusion matrix

Predicted as noise Predicted as single-
nuclei

Actual noise
Actual single-nuclei
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Confusion matrix

Predicted as noise Predicted as single-
nuclei

Actual noise TN=19
Actual single-nuclei
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Confusion matrix

Predicted as noise Predicted as single-
nuclei

Actual noise TN=19
Actual single-nuclei TP=51
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Confusion matrix

Predicted as noise Predicted as single-
nuclei

Actual noise TN=19 FP=2
Actual single-nuclei TP=51
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Confusion matrix

Predicted as noise Predicted as single-
nuclei

Actual noise TN=19 FP=2
Actual single-nuclei FN=5 TP=51

Something simpler?
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Accuracy
 Tells how often the classifier is correct

 N is the total number of annotated objects

Accuracy=𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑁𝑁

𝑁𝑁 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
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True positive rate (sensivity)
 How often is a positive predicted when it actually is 

positive

Sensivity= 𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇 All the experts true single-nuclei
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Specificity
 How often is a negative predicted when it actually is 

negative

Specificity= 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 All the experts true noise objects



10/3/2010Introduction to Medical Imaging65 DTU Informatics, Technical University of Denmark



10/3/2010Introduction to Medical Imaging66 DTU Informatics, Technical University of Denmark



10/3/2010Introduction to Medical Imaging67 DTU Informatics, Technical University of Denmark



DTU Compute

2025Image Analysis68 DTU Compute, Technical University of Denmark

Optimising the classification
 Changing the 

classification limits
 The rates will be 

changed:
– Accuracy
– Sensitivity
– Specificity
– …

 Very dependent on the 
task what is optimal
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Dependencies
 Increasing true positive rate

– Increased false positive rate
– Decreased precision
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Example – cell analysis
 We want only single-nuclei cells

– For further analysis

 We do not want to do an analysis of a noise object

 We are not interested in the true number of single 
nuclei 
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Advanced classification
 Fitting more advanced functions to the samples
 Multivariate Gaussians
 Mahalanobis distances
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Feature Engineering vs. Deep learning
Until around 5-7 

years ago feature 
engineering was the 
way to go

Now deep learning 
beats everything

However – feature 
engineering is still 
important
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Feature engineering
 Given a classification problem

– Cars vs. Pedestrians
 Use background knowledge to 

select relevant features
– Area
– Shape
– Appearance
– …

 Use multivariate statistics to 
classify

 Depending on the selected 
features
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Deep learning
 You start with a dummy 

classifier
 Feed it with lots and lots 

of data with given labels
 The network learns the 

optimal features
 Layer/network engineering
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Feature Engineering vs. Deep learning
Deep Learning
When you have lot 

of annotated data
Where it is not clear 

what features work

Manual features
When you have 

limited data
When it is rather 

obvious what 
features can 
discriminate
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Next week
 Pixel classification
 Advanced classification
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